CS 188: Artificial Intelligence Spring 2010

Advanced Applications:
Robotics

Pieter Abbeel - UC Berkeley A few slides from Sebastian Thrun, Dan Klein

Announcements

- Project 5 due Thursday --- Classification!

- Contest!!
- Tournaments every night.
- Final tournament: We will use submissions received by Thursday May 6, 11pm.

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
- Pretend you saw every outcome k extra times

$$
P_{L A P, k}(x)=\frac{c(x)+k}{N+k|X|}
$$

- What's Laplace with $\mathrm{k}=0$?
- k is the strength of the prior
- Laplace for conditionals:
- Smooth each conditional independently:

$$
P_{L A P, k}(x \mid y)=\begin{gathered}
c(x, y)+k \\
c(y)+k|X|
\end{gathered}
$$

$P_{L A P, 0}(X)=$
$P_{L A P, 1}(X)=$
$P_{L A P, 100}(X)=$

Robotic Control Tasks

- Perception / Tracking
- Where exactly am I?
-What's around me?

- Low-Level Control
- How to move the robot and/or objects from position A to position B
- High-Level Control
- What are my goals?
- What are the optimal high-level actions?

Robot folds towels

Low-Level Planning

- Low-level: move from configuration A to configuration B

A Simple Robot Arm

- Configuration Space
- What are the natural coordinates for specifying the robot's configuration?
- These are the configuration space coordinates
- Can't necessarily control all degrees of freedom directly
- Work Space
- What are the natural coordinates for specifying the effector tip's position?
- These are the work space coordinates

Coordinate Systems

Workspace:

- The world's (x, y) system
- Obstacles specified here
- Configuration space
- The robot's state

Planning happens here

- Obstacles can be projected to here

Obstacles in C-Space

- What / where are the obstacles?
- Remaining space is free space

Two-link manipulator

$x=d_{1} \cos \alpha_{1}+d_{2} \cos \left(\alpha_{1}+\alpha_{2}\right)$
$y=d_{1} \sin \alpha_{1}+d_{2} \sin \left(\alpha_{1}+\alpha_{2}\right)$

Example Obstacles in C-Space

- Demo
http://www-inst.eecs.berkeley.edu/~cs188/fa08/demos/robot.html

Probabilistic Roadmaps

- Idea: sample random points as nodes in a visibility graph
- This gives probabilistic roadmaps
- Very successful in practice
- Lets you add points where you need them

- If insufficient points, incomplete or weird paths

Glanced over

- Calibration of camera and robot
- Recognition of corners
- More generally: visual feedback during all manipulations
- How should we move the corners such that we obtain the desired result?

Now: Advanced Applications

Autonomous Helicopter Flight

- Control inputs:
- $\mathrm{a}_{\text {lon }}$: Main rotor longitudinal cyclic pitch control (affects pitch rate)
- $a_{\text {lat }}$: Main rotor latitudinal cyclic pitch control (affects roll rate)
- $\mathrm{a}_{\text {coll }}$: Main rotor collective pitch (affects main rotor thrust)
- $a_{\text {rud }}$: Tail rotor collective pitch (affects tail rotor thrust)

HMM for Tracking the Helicopter

- State: $s=(x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$
- Measurements:
- 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer
- Transitions (dynamics): [time elapse update]
- $\mathrm{s}_{\mathrm{t}+1}=\mathrm{f}\left(\mathrm{s}_{\mathrm{t}}, \mathrm{a}_{\mathrm{t}}\right)+\mathrm{w}_{\mathrm{t}}$
[f encodes helicopter dynamics]
[w is a probabilistic noise model]

Problem: What's the Reward?

- Rewards for hovering:
[demo: hover]
$R(s)=-\left(\alpha_{x}\left(x-x^{*}\right)^{2}+\alpha_{y}\left(y-y^{*}\right)^{2}+\alpha_{z}\left(z-z^{*}\right)^{2}\right.$
- $\mathrm{a}_{\text {on }}$: Main rotor longitudinal cyclic pitch control (affects pitch rate)
- $\mathrm{a}_{\text {at }}$: Main rotor latitudinal cyclic pitch control (affects roll rate)
- $\mathrm{a}_{\text {coll }}$: Main rotor collective pitch (affects main rotor thrust)
- a_{rd} : Tail rotor collective pitch (affects tail rotor thrust)
- Transitions (dynamics):
- $\mathrm{s}_{\mathrm{t}+1}=\mathrm{f}\left(\mathrm{s}_{\mathrm{t}}, \mathrm{a}_{\mathrm{t}}\right)+\mathrm{w}_{\mathrm{t}}$
[f encodes helicopter dynamics]
[w is a probabilistic noise model]

- Can we solve the MDP yet?

